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Abstract

Intrinsic image decomposition is an important and long-
standing computer vision problem. Given a single input im-
age, recovering the physical scene properties is ill-posed. In
this work, we take the advantage of deep learning, which is
proven to be highly efficient in solving the challenging com-
puter vision problems including intrinsic image decomposi-
tion. Our focus lies in the feature encoding phase to extract
discriminative features for different intrinsic layers from a
single input image. To achieve this goal, we explore the
distinctive characteristics between different intrinsic com-
ponents in the high dimensional feature embedding space.
We propose a feature divergence loss to force their high-
dimensional embedding feature vectors to be separated ef-
ficiently. The feature distributions are also constrained to
fit the real ones. In addition, we provide an approach to re-
move the data inconsistency in the MPI Sintel dataset, mak-
ing it more proper for intrinsic image decomposition. Ex-
perimental results indicate that the proposed network struc-
ture is able to outperform the state-of-the-art methods.

1. Introduction
In terms of intrinsic image decomposition, the albedo

image A indicates the surface material’s reflectivity which
is invariable under different illumination conditions, while
the shading image S accounts for the illumination effects
due to object geometry and camera viewpoint [3]. It is an
ill-posed problem to reconstruct the two intrinsic images
from a single color image I , with the formation model:

I = A · S. (1)

To solve this challenging inverse image formation prob-
lem, many researchers tried to apply physically-motivated
priors as constraints to disambiguate decompositions [18,
26, 30, 29, 37, 2, 7, 28]. These methods usually adopt the
priors in form of energy terms and solve the decomposition
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problem through graph-based inference algorithms. With
the surge of ground truth intrinsic decompositions [14, 8, 4],
data-driven deep learning methods [24, 33, 31, 3, 12, 21]
have achieved promising decomposition results and have
been drawing more and more research interest. However,
fully-supervised methods require high-quality and densely-
labelled decompositions, which are expensive to acquire.
To overcome this problem, methods training across differ-
ent datasets [21], training on synthetic datasets [31, 21],
adding additional constraints [12] and reusing physically-
motivated priors [3] have been proposed.

When developing their specific deep learning techniques,
previous methods usually extract features via a shared en-
coder, and then use different decoders to disentangle infor-
mation for specific intrinsic layers. Observing the different
distributions between albedo and shading in gradient do-
main [18], it is natural to assume that features representing
different intrinsic layers can be separated in the embedding
space. With the features separated in the encoding phase,
decoders can be released from distilling clues for specific
targets and focus on the reconstruction procedure. This idea
motivates our research in this paper.

We propose a novel two-stream encoder-decoder net-
work for intrinsic image decomposition. In particular, the
feature divergence loss is designed to encourage the two
encoders to extract distinctive features for different intrinsic
layers. The feature distribution constraint is used to encour-
age the features of a reconstructed intrinsic layer to have
similar distribution pattern with the ground truth decompo-
sition. Moreover, we provide an approach to deal with the
illumination inconsistency between the ground truth shad-
ing and input images in the MPI Sintel dataset, making it
more suitable for intrinsic image decomposition.

Our contributions can be summarized as follows:
1) A discriminative feature encoding approach consist-

ing of the feature divergence loss and the feature distribu-
tion constraint is proposed.

2) A novel two-stream encoder-decoder network for in-
trinsic image decomposition is proposed.

3) A data refinement algorithm is provided for the
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MPI Sintel dataset to produce a more physically consistent
dataset that better fits the intrinsic decomposition task.

4) Experimental results on various datasets demonstrate
the effectiveness of our proposed method. An ablation study
is also conducted to validate our design for discriminative
feature encoding.

2. Related work
Intrinsic image decomposition is a long standing com-

puter vision problem. However, it is seriously ill-posed to
recover an albedo layer and a shading layer from a sin-
gle color image [31]. In the recent decades, much effort
has been devoted to this challenging problem. These ap-
proaches can be coarsely classified into optimization-based
methods using physically-motivated priors, and deep learn-
ing based data-driven methods [6, 31]. There are also ap-
proaches using multiple images as inputs [36, 23, 17, 22],
treating the reflectance as a constant factor under variant il-
luminations. Depth cues are also taken into account in some
works [1, 10, 19, 16]. In this section, we focus on the works
using a single RGB image as input.

Physically-motivated Priors. To solve this ill-posed
intrinsic decomposition problem, researchers have derived
several physics-inspired priors to constrain the solution
space [31]. Land et al. [18] proposed the Retinex algo-
rithm, exploring the different properties of intrinsic compo-
nents in gradient domain (large derivatives are perceived as
changes in reflectance properties, while smoother variations
are seen as changes in illumination). Based on this assump-
tion, many priors for intrinsic image decomposition have
been explored. Derived from the piece-wise constant prop-
erty, reflectance sparsity [26, 30] and low-rank reflectances
[7] are used as constraints. There are other constrains such
as the distribution difference in gradient domain [5, 20],
non-local texture [29, 37], shape and illumination [2], and
user strokes [7, 28]. These hand-crafted priors are not likely
to hold on complex datasets [6].

Deep learning Methods. Thanks to the publicly avail-
able intrinsic image datasets including the MIT intrinsic
[14], the MPI Sintel [8] and the IIW [4], there has been a
surge of applying deep learning to intrinsic decomposition
[34, 24, 38, 39, 25]. Direct Intrinsics [33] is the first en-
tirely deep learning model that directly outputs the albedo
and shading layers given a color image. Results yielded
by this method are blurry due to down-samplings in en-
coding phase and deconvolutions in decoding phase. Fac-
ing the fact that high-quality and densely-labelled intrin-
sic images are expensive to acquire, many methods have
been developed to train models with additional constraints
[12], reusing physically-motivated priors [3], expanding the
dataset with synthetic images [31, 21] and training across
datasets [21]. Fan et al. [12] provided a network structure
using domain filter between the edges in guidance map to

encourage the reflectance piece-wise constancy. Baslamisli
et al. [3] presented a two-stage framework to firstly split
the image gradients into albedo and shading components,
which are then fed into decoders to predict pixel-wise intrin-
sic values. Shi et al. [31] trained a model to learn albedo,
shading and specular images on a large-scale object-level
synthetic dataset by rendering ShapeNet [9]. Li et al. [21]
presented an end-to-end learning approach that learns better
intrinsic image decompositions by leveraging datasets with
different types of labels. In contrast to these works, we try
to exploit the difference between intrinsic components in
feature space.

3. Method
3.1. Network structure

Our full network architecture is visualized in Figure 1.
The framework consists of two streams of encoder-decoder
sub-networks. One is for albedo image prediction, and the
other is for shading image. Taking the albedo stream for
example, the input image is passed through the convolu-
tional encoder to extract multi-level features, which are then
aggregated by (upsample, concatenate, convolution) se-
quences. In the decoding phase, the fused multi-scale fea-
tures are fed into the sequence of three residual dilated
blocks to reconstruct the albedo intrinsic image. The struc-
ture of the shading stream is the same as the albedo one.
In practice, we adopt VGG-19 [32] pretrained on ImageNet
[11] as the initialized encoder.

Previous works usually use a shared encoder to extract
features containing both albedo and shading information.
Then different decoders are applied to distill clues from the
comprehensive features for specific intrinsic image predic-
tion. The ‘Y’ shaped framework can be formulated as:

A = g(f(I; Θ); Ωa) = ga ◦ f(I),

S = g(f(I; Θ); Ωs) = gs ◦ f(I),
(2)

where f(·; Θ) and g(·; Ω) denote the feature encoder and
decoder respectively. Θ and Ω represent the corresponding
trainable parameters.

Different from the above methods, our designed network
is composed of two encoders for albedo and shading images
respectively. In this paper, we denote this structure as ‘X’
shaped framework:

A = g(f(I; Θa); Ωa) = ga ◦ fa(I),

S = g(f(I; Θs); Ωs) = gs ◦ fs(I).
(3)

Through this framework, the encoders (fa(·), fs(·)) are able
to extract features more pertinent to their reconstruction tar-
gets (albedo, shading). In Figure 2, we visualize the feature
distributions of different network structures, which explains
our idea in a more vivid way.
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Figure 1. Framework of our two-stream intrinsic image decomposition network. The input image is passed through two streams of sub-
network for albedo and shading image reconstructions respectively. We use the extractor in VGG-19 as the encoder structure, which is used
to extract multi-scale feature maps. These feature maps are then aggregated by (upsampling, concatenation, convolution) sequences.
Finally, three residual dilated blocks are used as decoder to reconstruct intrinsic images from the fused feature maps. ⊕ represents the
feature aggregation operation described above. � denotes element-wise multiplication. The rounded boxes represent loss computations, in
which ‘cycle’ means the cycle loss, ‘FDC’ means the feature distribution constraint and ‘FDV’ means the feature divergence loss.

(a) Shared encoder (b) Two encoders (c) Our structure

Figure 2. Feature distributions of different network structures. In
each column, the top is the features visualized by t-SNE, and the
bottom is the simplified network structure.

In the rest of this section, the core idea and design de-
tails of the discriminative feature encoding are introduced.
Then, important constraints for our intrinsic decomposition
network are explained.

3.2. Discriminative feature encoding

Our work is inspired by Land et al. [18]. Based on the
Retinex assumption, albedo and shading layers possess dif-

ferent properties in gradient domain. By utilizing such dis-
criminative properties, the intrinsic decomposition perfor-
mance can be improved.

In this work, we try to study and exploit the discrimi-
native properties in the more general convolutional feature
space. In the following, we describe our proposed discrim-
inative feature encoding detailedly.

Feature divergence loss. As shown in Fig-
ure 1, the encoding phase consists of multiple
(convolutions, relu,maxpooling) blocks, through
which the input signal is encoded into several different
abstraction levels. The multi-scale features are denoted as
{fE1 ,fE2 , . . . ,fEi , . . . ,fEn}, in which fEi represents
the output feature of the ith block. We define the feature
distance function as d : Rm×n×c × Rm×n×c 7→ R, where
c denotes the feature channel number and m × n is the
spatial size of the input signal:

dcos(f
Ei
a ,fEi

s ) =
1

Ni

∑
∀(x,y)

(
< fEi

a (x, y),fEi
s (x, y) >

||fEi
a (x, y)||2 · ||fEi

s (x, y)||2
)2,

dL1
(fEi

a ,fEi
s ) = h(||fEi

a − fEi
s ||1),

d(fEi
a ,fEi

s ) = α · dcos(fEi
a ,fEi

s ) + β · dL1
(fEi

a ,fEi
s ).

(4)
We design the feature distance measurement based on

the cosine and L1 norm between two vectors. In Eqn.4, fa



and fs represent features from the albedo encoder and the
shading encoder respectively. < ·, · > is the inner product
in Euclidean space; Ni = mi × ni; and (x, y) represents a
spatial location in feature maps. h(·) is a distance rescale
function modified from Sigmoid function to make dL1

∈
(0, 1). We use h(d) = 1− 1

1+exp(−(d−1.2·exp(1.2))/1.22) .
Then, the feature divergence loss Lfdv is formulated as:

Lfdv =

n∑
i

ωi · d(fEi
a ,fEi

s ), (5)

where ωi ≥ 0 is the weight for the feature distance from ab-
straction level i. Empirically, we extract five different levels
of abstraction in experiments (n = 5). We set ω[1,2,3,4,5] =
[0.01, 0.1, 0.5, 0.7, 1.0] and α = 0.3, β = 0.1.

Feature distribution constraint. Feature divergence
loss is to increase the distance between the feature vectors
embedded by different encoders. However, this is not suf-
ficient for discriminative feature encoding. Note that the
core idea of Fisher’s linear discriminant is to maximize the
distance between classes and minimize the distance within
classes simultaneously. As an analogue of that, along with
the feature divergence loss described above, we use the fea-
ture perceptual loss [15] between the predicted and ground
truth intrinsic images to constrain the encoding process, en-
couraging the embedded features to fit the real distribution.

We use the same distance measurement as in the feature
divergence loss. d(fEi

pred,f
Ei

real) denotes the feature dis-
tance in the ith abstraction level.

The feature distribution constraint Lfdc is formulated
as:

Lfdc =
n∑
i

γi((1− d(fEi
pred,a,f

Ei
real,a))+

(1− d(fEi
pred,s,f

Ei
real,s))),

(6)

where γi ≥ 0 is the weight factor. Note that (1 −
d(fpred,freal)) ∈ (0, 1) represents the feature similar-
ity between fpred and freal. Minimizing Eqn.6 encour-
ages the predicted and ground truth intrinsic images to have
similar perceptual features. In practice, the encoders are
reused to extract features from the predicted and target re-
sults in our framework, by which the embedded feature dis-
tribution can be optimized directly during training. Empir-
ically, we set γ[1,2,3,4,5] = [1.0, 1.0, 1.0, 1.0, 1.0] and
α = 0.1, β = 0.9.

3.3. Basic supervised constraints

Besides the above constraints for discriminative feature
encoding, several basic supervised losses are adopted to
train the intrinsic image decomposition network.

As described in Eqn.3, given an image I , the albedo
image A and the shading image S are predicted through
trained ga ◦fa and gs ◦fs. With the densely-labelled intrin-
sic images Â and Ŝ as the ground truth data, we constrain

the pixel-wise predictions using the reconstruction lossLrec

and the gradient loss Lgrad.
Reconstruction loss. We use the L1 loss LL1

combined
with the SSIM (the structural similarity index [35]) loss
LSSIM as the reconstruction loss:

Lrec = λL1LL1 + λSSIMLSSIM ,

LL1 = ||A− Â||1 + ||S − Ŝ||1 + ||A · S − I||1,

LSSIM = (1− SSIM(A, Â)) + (1− SSIM(S, Ŝ))

+ (1− SSIM(A · S, I)),

(7)

in which SSIM(x,y) measures the structural similarity
between image x and y. Thus we define the SSIM loss as
(1 − SSIM(x,y)), indicating the structural dissimilarity.
Empirically, we set λL1

= 30.0 and λSSIM = 0.5. Note
that the cycle loss is used to encourage the product of pre-
dicted A and S to be similar with the input image I .

Gradient loss. We also use the image gradients as an
supervision to help preserve the details of intrinsic images:

Lgrad = ||∇xA−∇xÂ||22 + ||∇yA−∇yÂ||22+

||∇xS −∇xŜ||22 + ||∇yS −∇yŜ||22,
(8)

in which ∇x or y is the image gradient along x or y axis.
In datasets with ground truth decomposition results like

the MIT intrinsic and the MPI Sintel, the total loss is con-
structed as:

Ltotal = λ1Lrec + λ2Lgrad + λ3Lfdv + λ4Lfdc. (9)

Empirically, we set λ[1,2,3,4] = [1.0, 1.5, 0.1, 1.0].
Different from the densely-labelled datasets, the IIW

dataset [4] only provides sparse annotations. Therefore, we
use the ordinal loss to measure the difference between the
predicted and target intrinsic images.

Ordinal loss. Since dense ground truth labels are not
available, [4] introduced the weighted human disagreement
rate (WHDR) as the error metric. Similar to [21], we use the
ordinal loss based on WHDR as sparse supervision term.
For each pair of annotated pixels (i, j) in the predicted
albedo image A, we have the error function:

ei,j(A) =


ωi,j(log Ai − log Aj)2, ri,j = 0

ωi,j(max(0,m− log Ai + log Aj))
2, ri,j = +1

ωi,j(max(0,m− log Aj + log Ai))
2, ri,j = −1

(10)
in which ri,j is the relative reflectance (albedo) judgements
from the IIW. The label ri,j = [0,+1,−1] means that pixel
i has [the same, higher, lower] brightness level as/than
pixel j.

Then, the ordinal loss Lord is obtained by accumulating
all the annotated pairs in the albedo image:

Lord =
∑
(i,j)

ei,j(A) (11)

Besides the sparse supervision using the ordinal loss, we
also adopt the same smoothness constraints as [21].



4. Intrinsic data refinement
The MPI Sintel [8] is a publicly-available densely-

labelled dataset containing complex indoor and outdoor
scenes. It is firstly designed for optical flow evaluation. For
the research purpose of intrinsic image decomposition, the
ground truth shading images have been rendered with a con-
stant gray albedo considering illumination effects. How-
ever, due to the creation process, the original input frames
can not be reconstructed from the ground truth albedo and
shading layers through Eqn.1.

As shown in the first row of Figure 3, the specular com-
ponent in the shading image can not be observed in the orig-
inal image, which means they do not share the same illumi-
nation condition. Although the simplified image formation
model Eqn.1 need not to be strictly respected, it is not phys-
ically correct to extract a shading layer depicting different
illumination effects from the original image. To overcome
this inconsistency, previous works [33] directly resynthe-
size original images I from the ground truth albedo A and
shading S via Eqn.1. However, this approach does not deal
with the specular component in the shading layer, which is
considered not modeled well by Eqn.1 [31].

In this paper, we propose an approach to refine the
dataset in order to shift it into a domain more representative
of real images. The refined MPI Sintel dataset (MPI RD) is
subject to the image formation model Eqn.1, and the shad-
ing layers contain no color information (gray shading). In
addition, the shading layers in the MPI RD maintain the
consistency with the original images. This can be shown
in two aspects. On one hand, the specular component is
removed from the shading layers. On the other hand, the
shape details observed in the original images are preserved
in the shading layers. We describe our data refinement algo-
rithm in Alg.1. In summary, we shift the distribution of the
albedo layer to a higher mean value, and then reconstruct
the shading layer from the original image and the shifted
albedo (step 2 to 6). After that, invalid pixels in the re-
constructed shading layer are computed using Local Linear
Embedding (LLE) [27] with the input I as the guided im-
age, which is adopted to construct the embedding weights
(step 7 to 8). Finally, the input image is resynthesized from
the processed albedo and shading images (step 9).

5. Experimental results
5.1. Datasets

5.1.1 MPI Sintel Dataset and our refined version

Sintel is an open source 3D animated short film, which has
been published in many formats for various research pur-
poses. For intrinsic image decomposition, the “clean pass”
images and the corresponding albedo and shading layers
have been published as the “MPI Sintel dataset”, contain-

Algorithm 1 Framework of data refinement for MPI Sintel.
Input: The original MPI Sintel dataset consisting of input im-

ages I , albedo images A and shading images S; MPI =
{I, A, S}

Output: The refined MPI Sintel dataset MPIrefined =
{I∗, A∗, S∗|I∗ = A∗ · S∗} under the constraint of intrinsic
decomposition model Eqn.1;

1: for each i ∈ [1, N ] do
2: convert the RGB images into L∗a∗b∗ space, and extract

the L channel as {Ii, Ai, Si} ;
3: reconstruct the albedo and shading: Âi = Ii/Si, Ŝi =
Ii/Ai;

4: compute the valid mask for Âi: Mi = (0 < Ŝi <
1) & (0 < Âi < 1);

5: compute the statistics of valid pixels indexed by Mi from
Âi: (µ̂, σ̂);

6: shift the distribution of Ai µ, σ to the reconstructed valid
statistics: Ãi = Ai−µ

σ
· σ̂ + µ̂;

7: reconstruct shading from Ãi: S̃i = Ii/Ãi;
8: reconstruct the invalid pixels in S̃i with the help of Ii: S∗

i ;
9: convert Ãi into RGB color space: A∗

i , and reconstruct
I∗i = A∗

i · S∗
i ;

10: end for

avg(MSE) = 0.1662
avg(MSE) = 0.0020

MSE between I and A×S

MPI_RD  /  MPI

Resynthesized Input 
(A×S)

Albedo (A) Shading (S)

MSE(I, A×S)  in MPI set
MSE(I, A×S)  in MPI_RD set
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Figure 3. Comparison between the refined MPI Sintel dataset
(MPI RD) and the original MPI Sintel dataset (MPI). Top is a
sample for illumination inconsistency in the MPI. Bottom is the
illustration for the MPI RD. In the bottom, each image is split into
two parts. The left shows the refined data, and the right is the
original data. The shading images in the MPI RD preserve more
geometric details and exclude specular components.

ing 18 sequences for a total of 890 frames. As discussed
in Section 4, there is severe illumination inconsistency be-
tween the input frames and the shading layers in this dataset.
Therefore, we provide the refined MPI Sintel dataset as a
more proper dataset for intrinsic image decomposition.

In the bottom of Figure 3, we demonstrate the compar-
ison between our refined MPI dataset (MPI RD) and the
original MPI dataset (MPI). In the shading layer of the first
column, we can see that in our refined shading image, the
specular on the shoulder of the girl is removed, making the
shading illumination consistent with the original input im-



age. In the second and third columns, the shading layers
from the MPI RD dataset contain more geometric details
than those from the MPI dataset. For instance, the wooden
cart’s coarse surface is depicted in the refined shading in
the third column, while the original shading from the MPI
dataset only has smooth surface. These examples demon-
strate that our refined MPI RD ensures the consistency be-
tween the intrinsic decompositions and the input image. In
the rightmost column in the bottom part of Figure 3, the
mean squared error (MSE) between the input image I and
the resynthesized imageA×S is computed. The MSE value
in the MPI RD dataset is significantly smaller than that in
the MPI dataset, showing that the intrinsic decomposition
model Eqn.1 is well respected in the refined dataset.

Training details. For data augmentation, we randomly
resize the input image by a scale factor in [0.8, 1.3], and
randomly crop a 288 × 288 patch from the resized image
per iteration. We also use horizontal flipping in the train-
ing phase. To compare with the state-of-the-art methods,
similar to [12], we evaluate our results on both a scene split
and an image split. For a scene split, half of the scenes are
used for training and the other half for testing. For an image
split, all 890 images are randomly separated into two sets.
Evaluation on a scene split is considered more challenging
as it requires more generalization capacity.

5.1.2 IIW Dataset

Intrinsic Images in the Wild (IIW) [IIW-TOG 2014] is a
large scale, public dataset for intrinsic image decomposi-
tion of real-world scenes. This dataset contains 5,230 real
images of mostly indoor scenes, combined with a total of
872,161 crowd-sourced annotations of reflectance compar-
isons between pairs of points sparsely selected throughout
the images (on average 100 judgements per image). Fol-
lowing many prior works [24, 25, 38, 12], we split the IIW
dataset by placing the first of every five consecutive images
sorted by the image ID into the test set, and the others into
the training set. The WHDR from [4] is employed to mea-
sure the quality of the reconstructed albedo images.

Training details. As for the IIW dataset, our proposed
network structure cannot be directly used due to the lack of
dense labelling of albedo and shading layers. Actually, only
sparse and relative reflectance annotations are provided. In
order to take advantage of the proposed feature divergence
loss and feature distribution constraint, we have to slightly
modify the network. In detail, the predicted dense albedo is
collected into an image pool to describe the distribution of
albedo. The reconstructed shading using the original image
and predicted albedo is used as the dense supervision for the
shading prediction, and is also collected in an image pool
to describe the shading distribution. We set the weights in
Eqn.6 to be γ[1,2,3,4,5] = [0, 0, 0, 1.0, 1.0].

5.2. In comparison to state-of-the-art methods

5.2.1 On the MPI Sintel and the refined dataset

Table 1. Numerical results on the MPI Sintel dataset.
MSE LMSE DSSIM

Methods albedo shading avg albedo shading avg albedo shading avg

im
ag

e
sp

lit

Retinex [14] 0.0606 0.0727 0.0667 0.0366 0.0419 0.0393 0.2270 0.2400 0.2335
Barron et al. [2] 0.0420 0.0436 0.0428 0.0298 0.0264 0.0281 0.2100 0.2060 0.2080
Chen et al. [10] 0.0307 0.0277 0.0292 0.0185 0.0190 0.0188 0.1960 0.1650 0.1805
MSCR [33] 0.0100 0.0092 0.0096 0.0083 0.0085 0.0084 0.2014 0.1505 0.1760
Revisiting [12] 0.0069 0.0059 0.0064 0.0044 0.0042 0.0043 0.1194 0.0822 0.1008
Ours 0.0047 0.0046 0.0047 0.0037 0.0038 0.0038 0.0950 0.0774 0.0862

sc
en

e
sp

lit MSCR [33] 0.0190 0.0213 0.0201 0.0129 0.0141 0.0135 0.2056 0.1596 0.1826
Revisiting [12] 0.0189 0.0171 0.0180 0.0122 0.0117 0.0119 0.1645 0.1450 0.1547
Ours 0.0173 0.0195 0.0184 0.0118 0.0147 0.0133 0.1587 0.1405 0.1496
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Figure 4. Qualitative comparison on the MPI Sintel dataset. The
visual results are evaluated on the more challenging scene split.

As shown in Table 1, our method achieves the best result
on the MPI Sintel dataset using the image split. On the more
challenging scene split, our method is competitive with the
state of the art, and achieves the best results for 5 out of 9
columns in the table. We show a group of qualitative results
evaluated on the scene split in Figure 4. While the MSCR
[33] results are relatively blurry due to the large kernel con-
volutions and down-sampling, our method provides sharper
results comparable to Revisiting [12]. Moreover, our shad-
ing layer depicts better shadow area than [12].

As described in Section 4, the MPI Sintel dataset has is-
sues of data consistency between the original input images
and the corresponding shading images. Because of the pro-
posed feature divergence loss, feature distribution constraint



and the use of the cycle loss, our method is sensitive to such
data inconsistency. Therefore, we compare our method with
the state-of-the-art methods on the more challenging scene
split of the refined MPI Sintel dataset. As shown in Table
2, our method achieves the best result, which demonstrates
the effectiveness of our method and data refinement pro-
cess. To further validate the effectiveness of our proposed
architecture, we also conduct an ablation study illustrated in
the bottom of Table 2. We can observe that using only the
feature divergence loss or the feature distribution constraint
does not improve the performance much, while using both
of them results in considerable performance gain.

Table 2. Numerical results on the Refined MPI Sintel dataset.
MSE LMSE DSSIM

Methods albedo shading avg albedo shading avg albedo shading avg

MSCR [33] 0.0222 0.0175 0.0199 0.0151 0.0122 0.0136 0.1803 0.1619 0.1711
Revisiting [12] 0.0196 0.0137 0.0167 0.0146 0.0094 0.0120 0.1651 0.1082 0.1366

Ours plain 0.0172 0.0147 0.0159 0.0116 0.0097 0.0106 0.1528 0.1085 0.1307
Ours w/o FDV 0.0166 0.0134 0.0150 0.0112 0.0090 0.0101 0.1474 0.1048 0.1261
Ours w/o FDC 0.0170 0.0130 0.0150 0.0113 0.0089 0.0101 0.1530 0.1070 0.1300
Ours 0.0157 0.0126 0.0142 0.0105 0.0087 0.0096 0.1419 0.1015 0.1217

(‘Ours plain’ is the basic two-stream network without FDV or FDC.)

In Figure 5, a side-by-side comparison with two other
methods on the refined dataset MPI RD is displayed. As
shown, our method performs better at separating shading
from albedo information. For example, in the bamboo
scene, our method outputs consistent shadow on the bam-
boo under the girl’s feet while other methods do not. Sim-
ilar observations can be made around the girl’s neck in the
bandage scene, the monster’s wing in the cave scene, and
the girl’s leg in the market scene.

Table 3. Numerical results on the MIT intrinsic dataset.
MSE LMSE

Methods albedo shading avg total

Barron et al. [2] 0.0064 0.0098 0.0081 0.0125

Zhou et al. [38] 0.0252 0.0229 0.0240 0.0319
Shi et al. [31] 0.0216 0.0135 0.0175 0.0271
MSCR [33] 0.0207 0.0124 0.0165 0.0239
Revisiting [12] 0.0134 0.0089 0.0111 0.0203
Ours 0.0120 0.0095 0.0108 0.0170

(Note that Barron et al.’s method [2] relies on specialized priors and
masked objects particular to this dataset.)

We also experiment on the MIT intrinsic dataset [14],
which consists of object-level real images. As in [12], we
use the 220 images in the dataset. To compare with previ-
ous methods, the split from [2] is used. Our refined MPI
Sintel dataset has gray scale shading images, thus we firstly
pre-train the model on the MPI RD and then fine-tune it on
the MIT training set. The numerical results are shown in
Table 3. Our method achieves the best results for most of
the columns in the table. Qualitative results are illustrated
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Figure 5. Qualitative comparison on our refined MPI Sintel
dataset. The visual results are evaluated on the scene split. Our
method is better at separating albedo and shading components.

Input MSCR Ours GTRevisiting

Figure 6. Qualitative comparison on the MIT intrinsic dataset.

in Figure 6. We can observe that our method predicts sharp
and accurate intrinsic layers.



Input Bi et al. Revisiting Ours Bi et al. Revisiting Ours
Figure 7. Qualitative comparison on the IIW dataset. The second to fourth columns are the albedo images, and the fifth to seventh columns
are the shading layers.

5.2.2 On the IIW dataset

Table 4. Numerical results on the IIW test set.
Methods WHDR(mean)

Baseline(const shading) 51.37
Baseline(const reflectance) 36.54
Shen et al. 2011 [30] 36.90
Retinex(color) [14] 26.89
Retinex(gray) [14] 26.84
Garces et al. 2012 [13] 25.46
Zhao et al. 2012 [37] 23.20
L1 flattening [5] 20.94
Bell et al. 2014 [4] 20.64
Zhou et al. 2015 [38] 19.95
Nestmeyer et al. 2017(CNN) [25] 19.49
Zoran et al. 2015* [39] 17.85
Nestmeyer et al. 2017 [25] 17.69
Bi et al. 2015 [5] 17.67
CGIntrinsic [21] 14.80
Revisiting [12] 14.45

Ours 13.90

In Table 4, we report the numerical results evaluated
on the test set of the IIW dataset. Our proposed method
achieves the best performance with a mean WHDR value
of 13.90%, which is a considerable improvement compared
to the second best one [12] with a mean WHDR value of
14.45%. To better illustrate the performance of our method,
we display groups of qualitative comparisons with the state-
of-the-art methods in Figure 7. In the first row, the detailed
intrinsic decomposition results are shown in the zoom-in
windows. It can be observed that our method successfully

preserves the texture of the floor tiles in the albedo layer,
while the other approaches treat such texture as shading. In
the second row, in a zoomed-in view, it can be noted that
our albedo layer contains clearer contours for the magazine
cover on the table. In the third row, the white block near the
left edge of the image is decomposed properly with albedo
consistency by our method. In the fourth row, the table in
the left corner of the image is well separated from the box
under the table in our albedo layer. These examples show
that our method can extract better albedo and shading layers
from original images, and preserve more detailed informa-
tion in intrinsic decomposition.

6. Conclusion
In this paper, we present a novel two-stream encoder-

decoder network for intrinsic image decomposition. Our
method is able to exploit the discriminative properties of
the features for different intrinsic images. Specifically,
the feature divergence loss is designed to increase the dis-
tance between features corresponding to different intrinsic
images, and the feature perceptual loss is applied to con-
strain the feature distribution. These two modules work
together to encode discriminative features for intrinsic im-
age decomposition. We provide an algorithm to refine the
MPI Sintel dataset to make it more suitable for intrinsic
image decomposition. The visual results in the MPI RD
and the more challenging IIW dataset demonstrate that our
proposed method can achieve superior results with better
albedo/shading separation.
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