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Fig. 12. Performance statistics (average and standard deviation of classi-
fication performance) of the proposed feature on (a) different subjects and
(b) actions.

which encodes the global visual context while performing
actions. The second method uses MHIST proposed in [26],
which is computed by encoding spontaneous motion and
periodic motion using Fourier analysis, based on sparse opti-
cal flow of ego motion. These two features are commonly
used in recent egocentric action recognition methods. In addi-
tion, to demonstrate how hand features work, we split our
hand related feature into two parts: 1) HF-S and 2) HF-T,
which encodes spatial information of hand shape/position and
temporal information of hand motion patterns, respectively.
Moreover, we use HF-ST to denote the proposed feature that
combines HF-S and HF-T. Fig. 13 shows the average accuracy
of different features calculated based on two settings. In the
same-subject setting, the training and testing are conducted on
the data of same subject. In the cross-subject setting, we use
self-excluded average accuracy of cross-subject validation as
described previously. Both spatial and temporal hand features
clearly outperform existing baseline features. The combined
feature (HF-ST) achieves the highest performance on both
settings (0.89 and 0.65, respectively).

Classification performance is then studied regarding each
action category as shown in Fig. 14. We extract classifica-
tion precision of each category from the confusion matrix and
average over all cross-subject pairs to calculate the average
numbers. As for HF-S, it works pretty well for the type task,
because the spatial hand shape is obviously different from
those in other tasks. It performs relatively badly on write and
note tasks due to the fact that similar hand shapes appear

Fig. 13. Performance comparison of different features on two settings: same-
subject and cross-subject.

Fig. 14. Comparison of accuracy regarding different actions.

Fig. 15. Comparison of accuracy regarding different subjects.

in these two tasks. On the other hand, MHIST and HF-T,
which are features based on motion information, outperform
other features for the note task (taking notes from screen to
notebook) due to regular up-and-down global motion induced
by changing the head pose to face either screen or notebook.
However, MHIST performs badly for the browse task while
our proposed HF-T still performs well. This shows the advan-
tage of our method, because in browse there lacks global
motion required by MHIST, while our proposed HF-T cap-
tures only hand motion and uses it effectively. Finally, our
proposed combined feature HF-ST achieves good accuracy in
most cases and outperforms others in average.

In Fig. 15 we show the performance regarding differ-
ent subjects. For all subjects, our method clearly improves
the classification performance compared to existing meth-
ods. Notice that performances of HF-S and HF-T may vary
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Fig. 16. Example of failure cases showing how individual variance in action performing influences the classification performance.

TABLE III
RESULTS FOR COMBINING ALL FEATURES

largely and it is not clear which is better. However, the
combined feature HF-ST always shows stable performance,
which demonstrates the necessity to consider both spatial and
temporal hand information as we propose in this paper.

It is interesting to ask what will happen if we combine all
features, i.e., GIST, MHIST, HF-S, and HF-T together. We
did experiments and the results are summarized in Table III.
There is no improvement in accuracy by adding other features
to our hand features. This suggests that our hand feature is
very efficient in the case of desktop action recognition from
egocentric video. However, developing and combining other
features to our features should be a promising future research
topic.

D. Failure Cases

In this section, we study the limitations of our hand features
by examining failure cases. Although the proposed method
achieves good average classification performance, it still fails
in several cases.

One important reason for false classification is due to indi-
vidual variance in performing the same action. As shown in
Fig. 16, in average, note and write tasks have a relatively high
probability to be misclassified (27% of write are confused as
note and 14% of note are confused as write). This is rea-
sonable since the two actions share similar hand shapes and
hand motion patterns. While in most cases (more than 50%)
they can be correctly classified by head motion in note, the
recognition rate for some subject is very low as shown in
the confusion matrix for Subject 5. This is supported by the
evidence that subject 5 did not make large head motion but
relied on gaze movement to see the screen. One way to solve
this problem is to add wearable sensors besides the wearable
camera to estimate user gaze and help distinguish actions.

Bad video recordings, such as motion blur or hand occlu-
sion could also make our system fail. Although head motion
is used as an important egocentric cue in action recognition,
it can bring big motion blur for head-mounted cameras and
makes hand segmentation fail. Moreover, the hands are some-
times partially outside the visual field due to inappropriate
camera setting, therefore causing problems for our hand-based
features.

VII. DISCUSSION

In this section, we first discuss the connection between the
feature distribution of different actions and the discriminability
of different features. Then we discuss subjective differences
in performing the same action and their influence on action
classification performance.

As illustrated in the experiments, the features extracted
from hand appearance and motion show notable advantage
over other baseline features in discriminating between dif-
ferent desktop actions. The empirical results are consistent
with the feature distribution of different actions as demon-
strated in Fig. 10. The scene context feature like GIST is
effective in differentiating actions with different background,
however, insufficient for actions that have different motion.
Head motion-based features like MHIST alone is incapable of
discriminating between actions that differ in motion patterns
of the hand. The proposed feature of HF-ST, which com-
bines hand appearance and motion, separates the five actions
very well from the embedded data space. More importantly,
this kind of feature analysis could be used as a powerful
tool in developing discriminative feature representation for a
recognition system.

Although the proposed system achieves reliable action
recognition performance for specific users, the performance
degrades a lot in the cross-subject case (Fig. 13), indicat-
ing that individual variance in action performing has a big
impact on the system performance. As shown in Fig. 12,
while some actions (browse and type) among the five desk-
top actions are relatively consistent among different subjects,
others are not. Taking read for example, the hand posture
of holding a book and the temporal frequency of turning
a page are different among subjects. The individual differ-
ence observed in the dataset suggests that a user-specific
action classifier is more reliable than a general action classifier
in desktop action recognition system. Furthermore, although
system performance degrades in cross-subject validation, the
results actually could be used to study the inherent diversity
about an action. Just as we have analyzed in Section VI-D, the
deviation of misclassification rate between write and note has
guided us to discover the unique motion pattern of a subject
in performing the action of note.

VIII. CONCLUSION

In this paper, we collect a dataset as a benchmark for desk-
top action recognition in egocentric paradigm. Video data of
daily desktop activities is captured by a wearable camera from
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a first-person perspective. Based on the dataset, we present a
action recognition pipeline and provide baseline recognition
results by examining different feature representation. In par-
ticular, we propose a novel feature representation by exploring
information from hand appearance and motion. We design
different hand features from egocentric video and analyze
their discriminability in the embedded data space. We evalu-
ate our method and compare it with existing egocentric video
based methods. Experimental results show that our method
achieves significantly better accuracy for both same-subject
and cross-subject settings in the dataset.

As for future work, we plan to extend the current dataset
to cover broader action categories under more general con-
ditions. Besides, the methods for action recognition need to
be further improved. One possible way is to incorporate tem-
poral consistency to enhance the performance. Another way
is to effectively combine hand information with global scene
descriptors in an end-to-end framework (like convolutional
neural networks).
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